Suggested solution of HW5

1. (a) Suppose limsup =+ = r < 1. Then there is N such that

1
e U

sup
E>N Tk

Hence, for all n € N,
Tpin < Rrpyy1 < R'zy.

Therefore, for all m <n
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Hence, {s, = > ;_, zx} is a cauchy sequence implying the conver-

gence.

(b) There is N such that
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Thus, for all n € N,
TpyN 2 TTpyN_1 2> T"TN.

As r™ — 00, by divergence test, the series is divergent.

2. Suppose limsup,, xgzl = L # oo. Let € > 0, there is N such that for all
n>N

Tn+1 S (L + e):vn S (L + E)n_N+1£EN.

Hence,
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Since the inequality holds for all n > N, we may let n — oo which

immediately obtain

1
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€ is arbitrary. Hence.
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If L = o0, there is nothing to prove. The lower bound is similar.



